skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DuBois, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4% - 7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e. time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts. 
    more » « less
  2. Analyzing queries from search engines and intelligent assistants is difficult. A key challenge is organizing queries into interpretable, context-preserving, representative, and flexible groups. We present structural templates, abstract queries that replace tokens with their linguistic feature forms, as a query grouping method. The templates allow analysts to create query groups with structural similarity at different granularities. We introduce Tempura, an interactive tool that lets analysts explore a query dataset with structural templates. Tempura summarizes a query dataset by selecting a representative subset of templates to show the query distribution. The tool also helps analysts navigate the template space by suggesting related templates likely to yield further explorations. Our user study shows that Tempura helps analysts examine the distribution of a query dataset, find labeling errors, and discover model error patterns and outliers. 
    more » « less